В пачке письменных работ не более 75 тетрадей. Известно, что половина
В пачке письменных работ не более 75 тетрадей. Знаменито, что половина работ имеет отметку quot;восемьquot;. Если убрать из пачки три работы, то 48% оставшихся работ будут иметь отметку quot;восемьquot;. Найдите, сколько работ было в пачке первоначально.
Задать свой вопросПусть изначально в пачке было x тетрадей.
Отметку восемь имеет половина из их, то есть 0.5 * x.
После того, как из пачки убрали 3 работы, в пачке осталось (x 3) тетради.
Из их отметку "восемь" имеют 48%, то есть 0.48 * (x 3).
Пусть y - количество тетрадей с отметкой "восемь" посреди трёх убранных (y может быть равен 0, 1, 2 или 3). Тогда общее количество отметок "восемь" равно 0.48 * (x 3) + y. Имеем:
0.5 * x = 0.48 * (x 3) + y;
0.5 * x = 0.48 * x 1.44 + y;
0.02 * x = y - 1.44;
x = (y 1.44) / 0.02, где y может принимать значения 0, 1, 2 либо 3)
При y = 0 и y = 1 x будет отрицательным, что противоречит условию задачи.
При y = 2:
x = (2 1.44) / 0.02 = 0.56 / 0.02 = 28 - ответ удовлетворяет условию.
При y = 3:
x = (3 1.44) / 0.02 = 1.56 / 0.02 = 78 - ответ не удовлетворяет условию, т.к. по условию в пачке было не более 75 тетрадей.
Остаётся единственный вероятный верный ответ: 28.
Ответ: первоначально в пачке было 28 работ.
-
Вопросы ответы
Статьи
Информатика
Статьи
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.