Величайший общий делитель (НОД) 2-ух чисел - это наибольшее целое число, на которое делятся данные два числа.
Для определения НОД нужно разложить числа на обыкновенные множители, определить схожие множители для 2-ух данных чисел и после этого перемножить одинаковые множители.
Разложим на множители заданные числа:
40 = 2 * 20 = 2 * 2 * 10 = 2 * 2 * 2 * 5.
32 = 2 * 16 = 2 * 2 * 8 = 2 * 2 * 2 * 4 = 2 * 2 * 2 * 2 * 2.
Схожим множителем для чисел 40 и 32 являются числа 2 * 2 * 2.
Потому: НОД (40; 32) = 2 * 2 * 2 = 8.
Меньшее общее кратное (НОК) 2-ух чисел - это меньшее положительное общее кратное данных чисел.
Для определения НОК нужно разложить числа на обыкновенные множители; сначала разложить на множители самое великое число, потом наименьшее число; подчеркнем в разложении наименьшего числа множители, которые не вошли в разложение величайшего числа.
Разложим на множители заданные числа:
40 = 2 * 20 = 2 * 2 * 10 = 2 * 2 * 2 * 5.
32 = 2 * 16 = 2 * 2 * 8 = 2 * 2 * 2 * 4 = 2 * 2 * 2 * 2 * 2.
Чтоб найти НОК, нужно недостающие множители (этот множитель подчеркнут) добавить к множителям большего числа и перемножить их: НОК (40; 32) = 2 * 2 * 2 * 5 * 2 * 2 = 160.
Ответ: НОД (40; 32) = 8; НОК (40; 32) = 160.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.