Написать четыре первых членов геометрической прогрессии данной формулой: bn=2n в кубе.

Написать четыре первых членов геометрической прогрессии данной формулой: bn=2n в кубе. Является ли эта последовательность геометрической?

Задать свой вопрос
1 ответ

bn = 2n^3.

b1 = 2 * 1^3 = 2.

b2 = 2 * 2^3 = 16. 

b3 = 2 * 3^3 = 54.

b4 = 2 * 4^3 = 128.

Определим, является ли данная последовательность геометрической. Для этого найдем знаменатель последовательности. Если последовательность геометрическая,он будет одинаковым для 2-ух последовательных членов, т.е. b2/b1 = b3/b2 = b4/b3 и т.д.

16/2 = 8

54/16 = 3.375

8 не одинаково 3.375, означает знаменатели не равны, по этому данная последовательность не геометрическая.

Ответ: 2, 16, 54, 128. Данная последовательность не является геометрической.

 

 

, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт