Моторная лодка прошла 28км по течению реки и 25км против течения

Моторная лодка прошла 28км по течению реки и 25км против течения реки за то же время, за которое она могла в стоячей воде пройти 54км. Найдите скорость лодки в стоячей воде, если скорость течения реки равна 2км/ч.

Задать свой вопрос
1 ответ

Обозначим скорость лодки в стоячей воде x км/ч, тогда скорость лодки за течением будет (x + 2) км/ч, а скорость лодки против течения - (x - 2) км/ч.

54/x ч - время движения лодки в стоячей воде.

28/(x + 2) ч - время движения лодки по течению.

25/(x - 2) ч - время движения лодки против течения.

По условию задачки составим уравнение и решим его.

28/(x + 2) + 25/(x - 2) = 54/x.

28/(x + 2) + 25/(x - 2) - 54/x = 0.

Найдем общий знаменатель x(x + 2)(x - 2). Знаменатель не может быть одинаковым нолю. Упростим уравнение.

28x(x - 2) + 25x(x + 2) - 54(x - 2)(x + 2) = 0.

Откроем скобки.

28x^2 - 56x + 25x^2 + 50x - 54x^2 + 216 = 0.

-x^2 - 6x + 216 = 0.

Мы получили квадратное уравнение. Умножим его на - 1.

x^2 + 6x - 216 = 0.

D  = b^2 - 4ac = 36 - 4 * 1 * ( - 216) = 36 + 864 = 900.

Уравнение имеет 2 корня.

По т. Виета

x1 + x2 = - 6

x1 * x2 = - 216.

x1 = 12

x2 = - 18 - скорость не может быть отрицательной.

Ответ: Скорость лодки в стоячей воде 12 км/ч.

 

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт